|
|
Usage: canonical [options] [input_file]
Read a polyhedron from a file in OFF format. Canonicalize or planarize it.
Uses algorithms by George W. Hart, http://www.georgehart.com/
http://www.georgehart.com/virtual-polyhedra/conway_notation.html
http://www.georgehart.com/virtual-polyhedra/canonical.html
If input_file is not given the program reads from standard input.
Options
-h,--help this help message (run 'off_util -H help' for general help)
--version version information
-e <opt> edge distribution (default : none)
s - project vertices onto a sphere
-r <opt> initial radius
e - average edge near points radius = 1 (default)
v - average vertex radius = 1
x - not changed
-C <opt> initial centering
e - edge near points centroid (default)
v - vertex centroid
x - not moved
-p <opt> planarization (done before canoncalization. default: none)
p - face centroids (magnitude squared)
q - face centroids (magnitude)
f - face centroids
m - mathematica planarize
a - sand and fill planarize
u - make faces into unit-edged regular polygons (minmax -a u)
-i <itrs> maximum number of planarize iterations (default: no limit)
-c <opt> canonicalization
m - mathematica version (default)
b - base/dual version (reciprocate on face normals)
a - moving edge version
x - none (default, if -p is set)
-n <itrs> maximum number of canonical iterations (default: no limit)
-O <args> output b - base, d - dual, i - intersection points (default: b)
n - base edge near points, m - dual edge near points
p - base near points centeroid, q - dual near points centroid
u - minimum tangent sphere, U - maximum, o - origin point
s - base incircles, S - rings, t -dual incircles, T -rings
-q <dist> offset for incircles to avoid coplanarity e.g 0.0001 (default: 0.0)
-g <opt> roundness of tangent sphere, positive integer n (default: 8)
-x <opt> Normals: n - Newell's, t - triangles, q - quads (default: Newell's)
-d <perc> radius test. precent difference between minumum and maximum radius
checks if polyhedron is collapsing. 0 for no test (default: 80)
-z <n> status reporting every n lines. -1 for no status. (default: 1000)
-l <lim> minimum distance change to terminate, as negative exponent
(default: 12 giving 1e-12)
-o <file> write output to file (default: write to standard output)
Mathematica Canonicalize Options (-c m and -p m)
-E <perc> percentage to scale the edge tangency error (default: 50)
-P <perc> percentage to scale the face planarity error (default: 20)
-A alterate algorithm. try if imbalance in result (-c m only)
Coloring Options (run 'off_util -H color' for help on color formats)
-I <col> intersection points and/or origin color (default: yellow)
-N <col> base near points, centroid, incircles color (default: red)
-M <col> dual near points, centroid, incircles color (default: darkgreen)
-B <col> base edge color (default: unchanged)
-D <col> dual edge color (default: unchanged)
-U <col> unit sphere color (default: white)
-T <tran> base/dual transparency. range from 0 (invisible) to 255 (opaque)
off_util cube | off_trans -S 1,2,3 | canonical | antiview
geodesic -c 2 ico | canonical -O bd | antiview
George Hart has a page on canonicalization.
Uses algorithms by George W. Hart, http://www.georgehart.com/. The 'Mathematica' algorithms have been written to follow George Hart's Mathematica implementation
Up:
Programs and Documentation
Next:
geodesic - geodesic spheres