|
Usage: canonical [options] [input_file] Read a polyhedron from a file in OFF format. Canonicalize or planarize it. Uses algorithms by George W. Hart, http://www.georgehart.com/ http://www.georgehart.com/virtual-polyhedra/conway_notation.html http://www.georgehart.com/virtual-polyhedra/canonical.html If input_file is not given the program reads from standard input. Options -h,--help this help message (run 'off_util -H help' for general help) --version version information -e <opt> edge distribution (default : none) s - project vertices onto a sphere -r <opt> initial radius e - average edge near points radius = 1 (default) v - average vertex radius = 1 x - not changed -C <opt> initial centering e - edge near points centroid (default) v - vertex centroid x - not moved -p <opt> planarization (done before canoncalization. default: none) q - face centroids magnitude squared m - mathematica planarize a - sand and fill planarize p - fast planarize (poly_form -a p) r - make faces into unit-edged regular polygons (poly_form -a r) -i <itrs> maximum planarize iterations. -1 for unlimited (default: -1) WARNING: unstable models may not finish unless -i is set -c <opt> canonicalization m - mathematica version (default) b - base/dual version (reciprocate on face normals) a - moving edge version x - none (default, if -p is set) -n <itrs> maximum canonical iterations. -1 for unlimited (default: -1) WARNING: unstable models may not finish unless -n is set -O <args> output b - base, d - dual, i - intersection points (default: b) n - base edge near points, m - dual edge near points p - base near points centroid, q - dual near points centroid u - minimum tangent sphere, U - maximum; o - origin point s - base incircles, S - rings; t - dual incircles, T - rings -q <dist> offset for incircles to avoid coplanarity e.g 0.0001 (default: 0) -g <opt> roundness of tangent sphere, positive integer n (default: 8) -x <opt> Normals: n - Newell's, t - triangles, q - quads (default: Newell's) -d <perc> radius test. percent difference between minimum and maximum radius checks if polyhedron is collapsing. 0 for no test (default: 80 for canonicalizing, not used for planarizing) -l <lim> minimum distance change to terminate, as negative exponent (default: 12 giving 1e-12) WARNING: high values can cause non-terminal behaviour. Use -n -z <nums> number of iterations between status reports (implies termination check) (0 for final report only, -1 for no report), optionally followed by a comma and the number of iterations between termination checks (0 for report checks only) (default: 1000,1) -o <file> write output to file (default: write to standard output) Extra Options for (-c m and -p m) -E <perc> percentage to scale the edge tangency error (default: 50) -P <perc> percentage to scale the face planarity error (default: 20) -A alternate algorithm. try if imbalance in result (-c m only) for (-p r and -p p) -S <perc> percentage to shorten longest edges on iteration (default: 1) -K <perc> percentage to reduce polygon radius on iteration (default: value of -S) -F <perc> percentage to reduce distance of vertex from face plane (-p rp) on iteration (default: value of -S) Coloring Options (run 'off_util -H color' for help on color formats) -I <col> intersection points and/or origin color (default: yellow) -N <col> base near points, centroid, incircles color (default: red) -M <col> dual near points, centroid, incircles color (default: darkgreen) -B <col> base edge color (default: unchanged) -D <col> dual edge color (default: unchanged) -U <col> unit sphere color (default: white) -T <tran> base/dual transparency. range from 0 (invisible) to 255 (opaque)
off_util cube | off_trans -S 1,2,3 | canonical | antiview
geodesic -c 2 ico | canonical -O bd | antiview
George Hart has a page on canonicalization.
Uses algorithms by George W. Hart, http://www.georgehart.com/. The 'Mathematica' algorithms have been written to follow George Hart's Mathematica implementation
Up:
Programs and Documentation
Next:
geodesic - geodesic spheres